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SUMMARY

This paper analyses the accuracy and numerical stability of coupling procedures in aeroelastic modelling. A two-
dimensional model problem assuming unsteady inviscid flow past an oscillating wall leads to an even simpler
one-dimensional model problem. Analysis of different numerical algorithms shows that in general the coupling
procedures are numerically stable, but care is required to achieve accuracy when using very few time steps per
period of natural oscillation of the structure. The relevance of the analysis to fully three-dimensional applications
is discussed.# 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

This analysis is motivated by interest in numerical procedures for coupling an unsteady CFD
computation to an unsteady structural dynamics model to predict aeroelastic behaviour. Extremely
large 3D computations of this sort are necessary to accurately predict the onset of flutter in both
turbomachinery and aircraft applications. One approach to the numerical approximation of this
problem is the use of a single consistent, fully coupled discretization modelling both the structure and
the fluid as a continuum whoss dynamics is governed by partial differential equations, plus boundary
conditions at the interfaces. However, for the solid the relevant PDE is the equation of motion for an
elastic solid, while for the fluid the appropriate equations are the Navier–Stokes equations with
suitable turbulence modelling. Moreover, each has its own characteristic length scales and time
scales. Therefore the production of a single fully coupled code for the combined aeroelastic
application is at least as much work as writing the individual programmes for the separate solid and
fluid applications. Since there are existing codes which accurately and efficiently solve these
individual problems, the more practical approach is to investigate how best to couple such codes
together to analyse aeroelastic problems.1–4 One concern is whether the coupling procedure may
introduce a spurious numerical instability, unrelated to the real flutter instabilities which are the focus
of engineering attention. Another concern is the accuracy of the resulting coupled analysis,
particularly when there are very few time steps per period of oscillation.

The general theory for the analysis of numerical interface or boundary condition instabilities is
well established but can be complicated to apply in practice.5–8 In this paper we simplify the analysis
by restricting attention to a simple 1D model problem. Section 2 of the paper constructs the model,
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explaining its relevance to the real 3D engineering problem. Section 3 considers one particular
discretization of the wall dynamics and the fluid dynamics, and a number of different treatments of
the coupling between the two. The analysis, and supporting numerical experiments reveal that in
general there is no spurious numerical instability, but there can be a problem with the accuracy of the
numerical approximation of the solid=fluid coupling. This may lead to a poor approximation of the
stability properties of a 3D aeroelastic system. Section 4 presents alternative discretizations of the
structural dynamics and associated aerodynamic boundary conditions based on a different form of the
structural dynamic equations. The final two sections give some further discussion of the relevance
of the analysis to real 3D engineering applications (Section 5) and then draw some conclusions
(Section 6).

2. ANALYTIC EQUATIONS

As shown in Figure 1, we start by considering a steady 2D parallel flow with velocity�0;V �T in the
region x > 0. The equations describing isentropic linearized perturbations to this compressible 2D
flow field are

@

@t

p
u
v

0

@

1

A
�

0 rc2 0
1=r 0 0

0 0 0

0

@

1

A

@

@x

p
u
v

0

@

1

A
�

V 0 rc2

0 V 0
1=r 0 V

0

@

1

A

@

@y

p
u
v

0

@

1

A
� 0; �1�

wherer andc are the average density and speed of sound respectively andp; u andv are the unsteady
perturbations to the pressure and the two velocity components respectively.

If the wall oscillates so that its positionxw�t� is independent ofy, then the resulting fluid
perturbation will also be independent ofy, and there will be no perturbation to the velocity in they-
direction. This reduces the linear unsteady aerodynamic equations to the simple form

@

@t
p
u

� �

�

0 rc2

1=r 0

� �

@

@x
p
u

� �

� 0; �2�

which is the same set of equations as those describing perturbations to a 1D stationary flow with the
same density and speed of sound. It is interesting, and perhaps surprising, that these equations do not
depend on the Mach number of the mean flow; this is because the assumption of no variation in they-
direction allows a Lagrangian transformation to new co-ordinatesx* � x andy* � y ÿ Vt, relative to
which the mean flow is indeed stationary.

Having justified the simple 1D aerodynamic equations, the other aspect of the model formulation is
the interaction between the aerodynamics and the motion of the wall. One boundary condition is the
linearized kinematic condition that the flow velocity relative to the moving wall is zero:

_xw�t� � u�0; t�: �3�

Figure 1. Parallel flow past a flat wall
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The dynamics of the wall motion is modelled by a simple mass–spring system subject to the external
unsteady aerodynamic pressure:

m�xw � mo2
0xw � ÿp�0; t�: �4�

Herem represents the mass per unit area ando0 is the natural frequency of oscillation in the absence
of any aerodynamic coupling. This equation will be referred to as the scalar version of the wall
dynamic equation. Some numerical discretizations start from an equivalent coupled system of first-
order ODEs,
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� Aw � P; �5�

where

w �

o0xw

_xw

� �

; A �

0 ÿo0

o0 0

� �

; P �

0
ÿp�0; t�=m

� �

: �6�

This will be referred to as the vector version of the equation.
This simple structural model seems far removed from the original representation of a continuum

elastic solid discussed in Section 1. In fact, it is common to represent the dynamics of an oscillating
blade in terms of a very limited number of structural modes; these are usually obtained using a finite
element approximation of the elastic solid vibrating in the absence of any external aerodynamics. The
modes with the lowest natural frequency are the ones which have the greatest potential for flutter and
large forced excitation, which is why higher modes are neglected. The lowest mode is usually a
simple bending mode whose nature is very similar to the simple undamped mass–spring system. Even
a torsional mode can be viewed locally (near the blade surface) as being similar to the model problem
in that there are no large variations in the tangential direction and so 1D aerodynamics is a good local
approximation. In other 2D and 3D computations with numerical instabilities at interfaces it is
generally true that any instability will first occur with a purely 1D eigenmode with a spatial variation
in the direction normal to the interface but no variation along the interface. Thus the 1D model
problem should be appropriate in trying to identify the possibility of a purely numerical instability.

This simple model problem exhibits aerodynamic damping of the wall oscillation. To determine
this, it is helpful to perform a change of variables in the aerodynamic equations. Characteristic
variables defined by

q � p � rcu; r � p ÿ rcu �7�

satisfy the uncoupled equations
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The acoustic wave represented byq travels right with velocityc, while the other acoustic wave
represented byr travels left with velocityÿc. We need to impose a radiation condition atx � 1

requiring that sufficiently far from the wall all perturbations are travelling away from the wall, not
towards it. Thus we require thatr ! 0 asx !1.

Using the characteristic variables, the equations for the wall are

_xw �
1

2rc
�q�0; t� ÿ r�0; t��; m�xw � mo2

0xw � ÿ
1
2 �q�0; t� � r�0; t��: �9�

We now consider solutions of the form

xw�t� � X eiot
; q�x; t� � Qeio�tÿx=c�

; r�x; t� � 0; �10�
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with X andQ being complex constants. The real physical variables correspond to the real components
of these complex expressions. These solutions satisfy the necessary equations and boundary
conditions provided that

ioX �

1
2rc

Q; �ÿmo2
� mo2

0�X � ÿ
1
2 Q; �11�

for which non-trivial solutions exist only if
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where d � rc=2mo0 is the non-dimensional damping factor. In real turbomachinery applications
modelled using a structure with a single degree of freedom, the level of damping is very small,
usually in the range 0�005–0�02. For aircraft applications concerned with wing aeroelasticity, values
in the range 0�05–0�2 are more typical. Assuming thatd is small,

o
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2 d2
� � O�d4

�: �13�

Taking the positive root without any loss of generality (since the real variables correspond to the real
component only) gives

eiot
� eio0tÿdo0t

�14�

and so the fractional reduction in the wall oscillation amplitude in one period of oscillation is

1 ÿ eÿ2pd
� 2pd: �15�

The model equations do not have any terms describing energy dissipation. It can be shown that this
reduction in the vibrational energy of the wall is in fact exactly equal to the acoustic energy radiated
during the period of oscillation.

In considering discretizations of the model equations, one question is whether the discrete
approximation allows unstable exponentially growing solutions with a time scale which is much
smaller than the period of oscillation2p=o0. If there is no such instability, then the main question is
how accurately the aerodynamic damping is modelled by the discretization.

3. STRUCTURAL ALGORITHMS BASED ONLY ON WALL DISPLACEMENT

In this section we consider coupled aeroelastic discretizations in which the scalar form of the wall
dynamic equation is approximated using central time differencing:

m
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0x�n�w � ÿ
1
2 �q

�n�
0 � r�n�0 �: �16�

A number of different discretizations of the kinematic condition will be analysed.

3.1. Upwind aerodynamic discretization

The first algorithms are based on upwind discretization of the aerodynamic equations. Using
forward time differencing and upwind spatial differencing, the interior equations are

q�n�1�
j � q�n�j ÿ

cDt

Dx
�q�n�j ÿ q�n�jÿ1�; j � 1; 2; 3; . . . ;

r�n�1�
j � r�n�j �

cDt

Dx
�r�n�j�1 ÿ r�n�j �; j � 0; 1; 2; . . . :

�17�
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The stability analysis considers the possible existence of a G–R (Godunov–Ryabenkii) normal
mode5,7 of the form

x�n�w � Xzn
; q�n�j � Qzn

k
j
q; r�n�j � Rzn

k
j
r; �18�

with jzj > 1 corresponding to an unstable mode.kq andkr are necessarily related toz through the
interior equations which require that

z � 1 ÿ l�1 ÿ k
ÿ1
q �; z � 1 � l�kr ÿ 1�: �19�

l is the CFL parametercDt=Dx and must satisfy the Fourier stability restrictionl4 1. It can be
shown that ifjzj > 1, then jkqj < 1 and jkrj > 1. Hence, to satisfy the discrete equivalent of the
radiation condition that all variables tend to zero asj !1, it is necessary thatR � 0.

3.1.1. Explicit first-order coupling.The final discrete equation is the kinematic compatibility
condition. A simple first order approximation of this is

1
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0 �: �20�

Inserting the assumed G–R mode into the wall dynamic equation and this kinematic equation
yields the two equations
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for which there are non-trivial solutions only if

zÿ 2 � zÿ1
� �o0Dt�2 � ÿ2do0Dt�1 ÿ zÿ1

�; �22�

where d is still the non-dimensional damping factord � rc=2mo0. Multiplying by z produces a
quadratic equation. Whend � 0, the roots of this are

z � 1 ÿ 1
2 �o0Dt�2 � io0Dt

p

�1 ÿ 1
4 �o0Dt�2�: �23�

If o0Dt4 2; then the two roots are a complex conjugate pair of unit magnitude, while ifo0Dt > 2
then the two roots are real and negative, with one having a magnitude greater than unity, giving
unstable exponential growth. Thus, numerical stability in the absence of any aerodynamic coupling
requireso0Dt4 2. This means that there must be more than three time steps per period of oscillation,
but it is clear that many more time steps than this are required for accuracy and so this stability
criterion is not significant.

When 0 < d < 1, we look for roots of the quadratic for whichjzj � 1, corresponding to the
threshold of instability.

Considering first the case in which the roots form a complex conjugate pair, from the coefficients
of the quadratic equation, the product of the roots is1 ÿ do0Dt. Hence, ifo0Dt4 2, then the two
roots have magnitude less than unity.

Considering next the case in which both roots of the quadratic are real,z � 1 is never a solution for
Dt > 0 andz � ÿ1 is a solution only when

4 ÿ �o0Dt�2 ÿ 2d�o0Dt� � 0: �24�

Thus the stability limit of the coupled problem is

o0Dt4
p

�4 � d2
� ÿ d < 2: �25�
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Assuming there are sufficient time steps per period to achieve an accurate solution, there is therefore
no numerical stability problem.

To determine the accuracy we letz � eioDt, which gives

eioDt
ÿ 2 � eÿioDt

� �o0Dt�2 � ÿ2do0Dt�1 ÿ eÿioDt
�: �26�

Performing a Taylor series expansion in bothd ando0Dt yields

o

o0
� 1 � id ÿ 1

2 d2
�

1
2 do0Dt � id2o0Dt � 1

24 �o0Dt�2 � O�d4
; �o0Dt�4�: �27�

This shows that the first order error in the coupling produces a first order error in both the real and
imaginary components of the complex frequency, corresponding to the frequency and damping rate
of the coupled oscillation respectively.

The accuracy of this analysis is shown in Figure 2. Numerical calculations were performed for
o0Dt � 0�02; 0�05; 0�1 and0�2 (corresponding approximately to 300, 120, 60 and 30 time steps per
period) and values ofd in the range 0�005–0�1. Each calculation was performed for 10,000 iterations
and from the results the frequency and damping rate were deduced. These are presented as full lines
in the two parts of Figure 2, while the broken lines show the predictions from the asymptotic analysis
above. The agreement is excellent over the whole parameter range studied.

Figure 2. Damping and frequency using explicit first-order coupling method (full lines, numerical computation; broken lines,
numerical analysis)
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For a typical flutter frequency and a time step limited by the CFL stability restrictioncDt=Dx < 1
for a typical grid resolution,o0Dt will be in the range10ÿ3–10ÿ2. In this case the errors in both the
frequency and damping are negligible compared with other errors such as modelling approximations
and uncertainty about structural damping factors.

This conclusion about the adequacy of first order coupling changes entirely when one considers
implicit methods. Replacing the forward time differencing of the aerodynamics by backward time
differencing gives the following algorithm for the aerodynamics.

q�n�1�
j � q�n�j ÿ

cDt

Dx
�q�n�1�

j ÿ q�n�1�
jÿ1 �; j � 0; 1; 2; . . . ;

r�n�1�
j � r�n�j �

cDt

Dx
�r�n�1�

j�1 ÿ r�n�1�
j �; j � 0; 1; 2; . . . :

�28�

All the previous analysis remains valid. This surprising fact is because the wall coupling equations do
not depend on the interior equations once it is determined thatr�n�j is zero throughout the domain in
order to satisfy the discrete radiation condition. The conclusions about the accuracy change because
the time step is no longer limited by the CFL condition. Instead,o0Dt will typically be O�10ÿ1

�. It is
the computational efficiency of this much larger time step which is the attraction of using implicit
methods for flutter analysis and other unsteady flow calculations at low reduced frequencies.9,10

However, as a consequence the first order coupling is no longer sufficiently accurate.

3.1.2. An explicit second-order coupling. A second-order accurate coupling is achieved by
changing the kinematic discretization to

1
Dt
�
3
2 x�n�1�

w ÿ 2x�n�w �
1
2 x�nÿ1�

w � �

1
2rc

�q�n�1�
0 ÿ r�n�1�

0 �; �29�

which leads to the following modified equation forz:

zÿ 2 � zÿ1
� �o0Dt�2 � ÿ2do0Dt �32 ÿ 2zÿ1

�
1
2 zÿ2

�: �30�

Multiplying by z2 now gives a cubic equation inz. In the limit asd ! 0 two of the roots are the same
as before and the third isz � 0. This third root is only slightly perturbed when0 < d � 1 and so
remains strongly stable. To find the perturbation to the other two roots it is convenient again to make
the substitutionz � eioDt, giving

eioDt
ÿ 2 � eÿioDt

� �o0Dt�2 � ÿ2do0Dt �32 ÿ 2eÿioDt
�

1
2 eÿ2ioDt

�: �31�

Differentiating with respect tod gives
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@d
� o0 i � 2i sin2 oDt
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� 2 tan
oDt

2
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sin2 oDt

2

� �� �

: �32�

The two roots which are neutrally stable whend � 0 ando0Dt < 2 have corresponding real values
for o. The imaginary part of@o=@d is then positive, showing that the perturbed roots are stable. The
stability boundary for0 < d � 1 therefore remainso0Dt < 2.

A Taylor series expansion of equation (31) yields
o

o0
� 1 � id ÿ 1

2 d2
�

1
24 �o0Dt�2 � 1

2 id�o0Dt�2 � O�d4
; �o0Dt�4�: �33�

Because of the improved accuracy of the kinematic discretization the error is now second order in
o0Dt. If o0Dt � 0�1, corresponding to approximately 60 time steps per period, then the error is
probably acceptable; ifo0Dt � 0�3, corresponding to approximately 20 time steps per period, then
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the error is probably unacceptable. The accuracy of this asymptotic analysis is shown by the
numerical results in Figure 3.

3.1.3. An unstable second-order coupling.Another second-order accurate discretization of the
kinematic condition is

1
Dt
�x�n�1�

w ÿ x�n�w � �

1
4rc

�q�n�0 � q�n�1�
0 ÿ r�n�0 ÿ r�n�1�

0 �; �34�

which leads to the following modified equation forz:

zÿ 2 � zÿ1
� �o0Dt�2 � ÿ4do0Dt

zÿ 1
z� 1

: �35�

Multiplying by z� 1 gives a cubic equation inz. The product of its three roots isÿ1, and so the only
possibility for stability is if one root isÿ1 and the other two form a complex comjugate pair of unit
magnitude. However,z � ÿ1 is not a root if d is non-zero, and therefore the coupled system is
unconditionally unstable.

Figure 3. Damping and frequency using explicit second-order coupling method (full lines, numerical computation; broken lines,
numerical analysis)

746 M. B. GILES

INT. J. NUMER. METHODS FLUIDS, VOL.24: 739–757 (1997) # 1997 by John Wiley & Sons, Ltd.



Asymptotic analysis shows that the unstable root is

z � ÿ1 ÿ 2do0Dt � O�d2
�o0Dt�2�; �36�

corresponding to a saw-tooth oscillation in time with a slowly growing amplitude. This is confirmed
by the numerical results in Figure 4 ford � 0�1 ando0Dt � 0�2.

3.1.4. An implicit second-order coupling.Yet another second-order-accurate discretization is

1
2Dt

�x�n�1�
w ÿ x�nÿ1�

w � �

1
2rc

�q�n�0 ÿ r�n�0 �; �37�

which leads to the following modified equation forz:

zÿ 2 � zÿ1
� �o0Dt�2 � ÿdo0Dt�zÿ zÿ1

�: �38�

Multiplying by z gives a quadratic equation with no spurious roots. Substitutingz � eioDt and
differentiating yields

@o

@d
� io0 �39�

and so the perturbed roots are stable foro0Dt < 2 and0 < d � 1.
Asymptotic analysis yields

o

o0
� 1 � id ÿ 1

2 d2
�

1
24 �o0Dt�2 � O�d4

; d�o0Dt�2; �o0Dt�4�: �40�

The problem with this kinematic discretization is that it is now an implicit algorithm since the
surface pressurep�n�0 depends onx�n�1�

w , andvice versa. This implicitness is awkward because in a 3D
application it means that the aerodynamic variables at all grid points on the surface of the vibrating

Figure 4. Numerical computation using unstable second-order coupling method

BOUNDARY CONDITIONS IN AEROELASTIC ANALYSIS 747

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL.24: 739–757 (1997)



blade are coupled through the structural boundary conditions. The difficulty can be overcome by a
predictor=corrector implementation:

m

Dt2
�xw* ÿ 2x�n�w � x�nÿ1�

w � � mo2
0x�n�w � ÿp�nÿ1�

0

o

predictor;

p�n�0 � p�n�0 �x�nÿ1�
w ; x�n�w ; xw* ; q�nÿ1�

j ; r�nÿ1�
j �

m

Dt2
�x�n�1�

w ÿ 2x�n�w � x�nÿ1�
w � � mo2

0x�n�w � ÿp�n�0

9

>
=

>
;

corrector:

�41�

In the prediction stage a first approximation for the surface pressurep�n�0 is given by the pressurep�nÿ1�
0

at the previous time step, and this is used to obtain a first estimate forx�n�1�
w . In the correction stage

the predicted valuexw* is used in conjunction with the discrete aerodynamic equations and kinematic
boundary condition to calculate a corrected value forp�n�0 ; this is then used to calculate a corrected
value forx�n�1�

w .
The error introduced by this predictor=corrector approximation to the original implicit algorithm is

O��do0Dt�2�, and so the asymptotic expression for the complex frequency in equation (40) remains
valid. This is confirmed by Figure 5 which shows the frequency and decay rates of the results

Figure 5. Damping and frequency using second-order predictor=corrector method (full lines, numerical computation; broken
lines, numerical analysis)
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obtained using the predictor=corrector method. There is excellent agreement with the predictions of
the asymptotic analysis.

4. STRUCTURAL ALGORITHMS BASED ON WALL DISPLACEMENT AND VELOCITY

In this section we consider coupled aeroelastic discretizations based on the vector form of the wall
dynamic equation. An advantage of this approach is that by calculating both the displacement and
velocity at each time step, the kinematic boundary condition becomes simply

_x�n�w � u�n�0 : �42�

4.1. Trapezoidal integration

The simplest second-order-accurate discretization of the vector form of the wall dynamic equation
is trapezoidal integration (also known as the Crank–Nicolson orbox method):

1
Dt
�w�n�1�

ÿ w�n�
� �

1
2 A�w�n�1�

� w�n�
� �

1
2 �P

�n�1�
� P�n��: �43�

Assuming that upwind differencing is used for the aerodynamic equations thenr�n�j � 0 for all j and
n, and hence

P�n� �
0

ÿ�rc=m�_x�n�w

� �

�

0
ÿ2do0 _x�n�w

� �

: �44�

Therefore equation (43) becomes

1 ÿ
1
2o0Dt

1
2o0Dt 1 � do0Dt

� �

w�n�1�
�

1 1
2o0Dt

ÿ
1
2o0Dt 1 ÿ do0Dt

� �

w�n�
: �45�

w�n�
� znW is a solution for some non-trivial constant vectorW if and only if,

det
zÿ 1 ÿ

1
2o0Dt�z� 1�

1
2o0Dt�z� 1� zÿ 1 � do0Dt�z� 1�

 !

� 0

) z2 1 �
o0Dt

2

� �2

�do0Dt

" #

ÿ 2z 1 ÿ
o0Dt

2

� �2
" #

� 1 �
o0Dt

2

� �2

ÿdo0Dt

" #

� 0

) z �
1 ÿ �o0Dt=2�2 � io0Dt

p

�1 ÿ d2
�

1 � �o0Dt=2�2 � do0Dt
: �46�

Provided that0 < d < 1, the two roots form a complex conjugate pair with magnitude less than
unity. Therefore the coupled algorithm is unconditionally stable. In addition, settingz � exp��ioDt�,
and performing a Taylor series expansion yields

o

o0
� 1 � id ÿ 1

2 d2
ÿ

1
12 �o0Dt�2 ÿ 1

4 id�o0Dt�2 � O�d4
; �o0Dt�4�: �47�
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As with the implicit method of the last section, there is the problem thatw�n�1� depends onP�n�1�,
andvice versa. This is again solved using a predictor=corrector procedure:

w* � �I � 1
2DtA�ÿ1

��I ÿ 1
2DtA�w�n�

� DtP�n�
� g predictor;

P�n�1�
� P�n�1�

�w�n�
;w*; q�n�j ; r�n�j �

w�n�1�
� �I � 1

2DtA�ÿ1
��I ÿ 1

2DtA�w�n�
�

1
2Dt�P�n�1�

� P�n���

9

=

;

corrector:
�48�

As before, the predictor=corrector combination gives results which are withinO��do0Dt�2� of those
which would be obtained from the original implicit coupling. This is confirmed by Figure 6 which
shows the results obtained using this predictor=corrector variant of the trapezoidal algorithm.
Provided thato0Dt < 0�2, corresponding to there being at least 30 time steps per period, the
frequency and damping are both correct to within 1%, which is perfectly acceptable accuracy for
engineering purposes..

Figure 6. Damping and frequency using second-order trapezoidal method (full lines, numerical computation; broken lines,
numerical analysis)
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4.2. Second-order backward differentiation

Another second order accurate approximation of the dynamic equation is

1
Dt
�
3
2 w�n�1�

ÿ 2w�n�
�

1
2 w�nÿ1�

� � Aw�n�1�
� P�n�1�

: �49�

This is the method used by Alonsoet al.11 for aeroelastic computations in which the fluid is water and
so the corresponding value ford is much larger than for aeronautical applications. As with the last
method, it can be implemented using a predictor=corrector procedure to avoid the complications of an
implicit algorithm. Alonsoet al. use several correction stages within a time-accurate multigrid
procedure because of the much larger effect of the fluid dynamics on the structural behaviour.11

The determinant condition for this discretization is

det
3
2 zÿ 2 ÿ 1

2 zÿ1
ÿzo0Dt

zo0Dt 3
2 zÿ 2 ÿ 1

2 zÿ1
� 2zdo0Dt

 !

� 0

) �
3
2 ÿ 2zÿ1

�
1
2 zÿ2

�

2
� 2do0Dt�32 ÿ 2zÿ1

�
1
2 zÿ2

� � �o0Dt�2 � 0: �50�

Whend � 0, this reduces to

3
2 ÿ 2zÿ1

�
1
2 zÿ2

� io0Dt: �51�

It can be shown that both roots have less than unit magnitude for all values ofo0Dt. In particular,
wheno0Dt � 1, one root is a strongly stable spurious root (z � 1

3). The other root can be expressed as
z � exp�ioDt� for which asymptotic analysis gives

o

o0
� 1 ÿ 1

3 �o0Dt�2 � 1
4 i�o0Dt�3; �52�

showing that there is third-order numerical damping of the wall oscillation in the absence of any
aerodynamic damping.

When0 < d < 1, asymptotic analysis yields

o

o0
� 1 � id ÿ 1

2 d2
ÿ

1
3 �o0Dt�2 ÿ id�o0Dt�2 � 1

4 i�o0Dt�3 � O�d4
; �o0Dt�4�: �53�

Figure 7 presents these asymptotic predictions along with numerical results using a predictor=correc-
tor implementation of the algorithm. The results confirm that this method is significantly less accurate
than the method based on trapezoidal integration. The error in the real part of the frequency and one
of the errors in the damping are both four times greater. Also, this algorithm gives numerical damping
of the uncoupled wall dynamics; this numerical damping of magnitude1

4 �o0Dt�3 is significant relative
to the true physical damping whend is 0�005–0�02 ando0Dt is 0�1 or larger.

This same criticism can be applied to many other methods frequently used for structural dynamics,
including the Houboult, Wilson-y and Newmark-b methods and the multiparameter unified schemes
of Zienkiewicz et al.12 and Thomas and Gladwell.13 Some of these methods always introduce
numerical damping; the others depend on a set of parameters which are often chosen to ensure some
level of numerical damping. The reason that structural dynamicists prefer methods with numerical
damping is that they are usually integrating very large stiff systems of equations in which some very
high frequency modes are not adequately resolved by the chosen time step. Therefore (quoting from
the paper by Thomas and Gladwell13) ‘in practice we use methods which are damped. . . since this
ensures that the highly oscillatory eigenfunctions. . . excited by noise in the initial data are damped
out quickly’.
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In the application in this paper there is only one structural eigenmode and so this concern does not
arise. Furthermore, in a real 3D application it is assumed that a reduced modal representation of the
structural dynamics would be used,1–3,14perhaps using the lowest five eigenmodes, and so again there
would be no problem of numerical stiffness. If a very large number of structural igenmodes are
retained it may become desirable in implicit calculations to introduce structural damping into the
equations for the highest frequency modes only, since these frequencies are unlikely to be adequately
resolved by the large time step.

4.3. State-transition algorithm

The state transition algorithm10,15is an alternative approximation of the vector version of the wall
dynamics equation. The algorithm is designed to be exact when there is no aerodynamic coupling.
The exponential matrixexp�tA� is defined for an arbitrary matrixA as

exp�tA� �
P
1

0

tn

n!
An
: �54�

Figure 7. Damping and frequency using backward differencing method (full lines, numerical computation; broken lines,
numerical analysis)
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By definition,A0 is the identity matrixI and soexp�tA� � I whent � 0. Another important property
of the exponential matrix is that

d
dt

exp�tA� � exp�tA�A: �55�

For the particular matrixA in this analysis,

exp�tA� �
cos�o0t� ÿ�o0t�

sin�o0t� cos�o0t�

 !

: �56�

This can be verified by checking that it satisfies the above two conditions or by directly evaluatingAn

and using the series expansions forcos�o0t� andsin�o0t�. Using this matrix, it follows immediately
that

d
dt
�exp�tA�w� � exp�tA�

dw

dt
� exp�tA�Aw � exp�tA�P �57�

and hence

w�t0� ÿ exp�ÿt0A�w�0� �
�t0

0
exp��t ÿ t0�A�P�t�dt: �58�

The state transition method uses this equation witht0 � Dt and a suitable approximation to the
integral. The approximation used by Edwardset al.15 is

�t0

0
exp��t ÿ t0�A�P�t�dt �

��t0

0
exp��t ÿ t0�A�dt

�

1
2 �P�0� � P�t0��: �59�

Since
�t0

0
exp��t ÿ t0�A�dt � Aÿ1

�I ÿ exp�ÿt0A��; �60�

the resulting algorithm is

w�n�1�
� exp�ÿDtA�w�n�

�
1
2 Aÿ1

�I ÿ exp�ÿDtA���P�n� � P�n�1�
�: �61�

The determinant condition for the eigenvaluez leads to a quadratic equation,

z2
�1 � d sin�o0Dt�� ÿ 2z cos�o0Dt� � �1 ÿ d sin�o0Dt�� � 0

) z �
cos�o0Dt� � i sin�o0Dt�

p

�1 ÿ d2
�

1 � d sin�o0Dt�
: �62�

When0 < d < 1, the two roots form a complex conjugate pair whose magnitude is less than unity
provided thatsin�oDt� > 0; this condition is satisifed if there are more than two time steps per period
of oscillation.

Asymptotic analysis leads to

o

o0
� 1 � id ÿ 1

2 d2
�

1
6 id�o0Dt�2 � O�d4

; �o0Dt�4�: �63�

Numerical results using a predictor=corrector implementation are shown in Figure 8. As predicted,
the frequency is determined very accurately even when using very few time steps per period, but
there is a second order error in the damping.
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An improved variant of the state transition algorithm is obtained by approximating the pressure
integral as

�t0

0
exp��t ÿ t0�A�P�t�dt �

t0
2
�exp�ÿt0A�P�0� � P�t0��; �64�

giving the algorithm

w�n�1�
� exp�ÿDtA��w�n�

�
1
2DtP�n�

� �
1
2DtP�n�1�

: �65�

The determinant condition leads to

z2
�1 � do0Dt� ÿ 2z cos�o0Dt� � �1 ÿ do0Dt� � 0

) z �
cos�o0Dt� �

p

�ÿ sin2
�o0Dt� � �do0Dt�2�

1 � do0Dt
: �66�

Figure 8. Damping and frequency using first variant of state transition method (full lines, numerical computation; broken lines,
numerical analysis)
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The two roots are stable for all values ofd ando0Dt. Asymptotic analysis yields
o

o0
� 1 � id ÿ 1

2 d2
� O�d4

; �o0Dt�4�; �67�

which means that, to within the accuracy of the asymptotic analysis, the numerical results should
perfectly match the analytic behaviour. This prediction is verified by the results shown in Figure 9,
which as usual are obtained using a predictor=corrector implementation.

5. DISCUSSION OF RELEVANCE TO 3D APPLICATIONS

The interpretation of the analysis in this paper in the context of real 3D engineering calculations is a
tricky issue. The simple model problem in the current analysis has a one-degree-of-freedom structural
oscillation in which the surface pressure varies in phase with the wall velocity, causing aerodynamic
damping under all conditions. In a real application the structural model will have several degrees of
freedom. For each degree of freedom there is a correspondinggeneralised forcewhich is the
combined effect of the entire surface pressure distribution on the particular mode of vibration. The
non-dimensional generalized force will have magnitude corresponding to the damping factord in the
model problem, but unlike in the model problem the generalized force will not be perfectly in phase

Figure 9. Damping and frequency using second variant of state transition method (full lines, numerical computation; broken
lines, numerical analysis)
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with the mode motion. Flutter, a physical instability of the coupled aeroelastic system, occurs when
the phase difference between the force and the velocity of the mode is less than 90�. This corresponds
to redefining the damping factord in the model analysis to be a complex quantity with negative real
component. For accurate prediction of the conditions under which flutter occurs, it is therefore the
phase rather than the magnitude of the aerodynamics which must be accurately represented by the
numerical discretization. Treatingd as a general complex quantity, it can be seen that the first order
coupling leads to significant phase errors unless the time step is very small. The analysis of the
second order coupling shows that the leading error is in the magnitude of the aerodynamic effect;
there is only a third-order error in its phase. These methods are therefore very much more accurate.

6. CONCLUSIONS

By performing a detailed analysis of a relatively simple 1D model problem, this paper has tried to
address the issues of stability and accuracy in the discretization of aeroelastic systems. The key non-
dimensional physical parameter in the model problem is the aerodynamic damping factord. The
corresponding parameter in turbomachinery applications lies in the range 0�005–0�02 while for
aircraft applications it is usually in the range 0�05–0�2.

There appears to be no possibility of a spurious numerical instability due to the coupling of the
aerodynamic and structural models, provided that there are no unstable or neutrally stable spurious
modes in the uncoupled limit asd ! 0. The numerical accuracy has been assessed by asymptotic
analysis of the complex frequency obtained from the coupled discretizations. Numerical experiments
demonstrate the accuracy of the asymptotic analysis when there are at least 30 time steps per period
and the damping is in the range 0�005–0�1.

If an explicit CFD algorithm is used for the aerodynamic equations, then for typical flutter
frequencies and aerodynamic grid resolution the number of time steps per period will beO�103

�.
Hence any stable algorithm for the discretization of the structural dynamics and the kinematic
boundary condition will be sufficiently accurate provided that it is at least second order accurate for
the uncoupled vibration, and first order accurate for the coupled analysis.

If, on the other hand, an implicit CFD algorithm is used for the aerodynamic equations, then it is
possible that there may be as few as 30 time steps per period. In this case it is necessary to use a
discretization which is second-order accurate for both the uncoupled and coupled systems. Almost
any of the second order methods analysed in this paper could be used with confidence; in real 3D
computations the errors due to the unsteady flow discretization will probably be much greater than
those due to the aeroelastic coupling algorithm. However, for turbomachinery applications with
extremely low levels of physical damping it is best to avoid the use of the many standard algorithms
which cause spurious numerical damping of the uncoupled wall dynamics.
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